首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21988篇
  免费   5281篇
  国内免费   7301篇
测绘学   3340篇
大气科学   3380篇
地球物理   4539篇
地质学   14019篇
海洋学   3650篇
天文学   463篇
综合类   2232篇
自然地理   2947篇
  2024年   107篇
  2023年   502篇
  2022年   1311篇
  2021年   1606篇
  2020年   1350篇
  2019年   1372篇
  2018年   1568篇
  2017年   1320篇
  2016年   1444篇
  2015年   1636篇
  2014年   1627篇
  2013年   1881篇
  2012年   1977篇
  2011年   1994篇
  2010年   1957篇
  2009年   1785篇
  2008年   1657篇
  2007年   1474篇
  2006年   1371篇
  2005年   1153篇
  2004年   883篇
  2003年   715篇
  2002年   648篇
  2001年   645篇
  2000年   550篇
  1999年   407篇
  1998年   242篇
  1997年   236篇
  1996年   203篇
  1995年   150篇
  1994年   174篇
  1993年   121篇
  1992年   104篇
  1991年   67篇
  1990年   59篇
  1989年   42篇
  1988年   46篇
  1987年   36篇
  1986年   18篇
  1985年   30篇
  1984年   9篇
  1983年   12篇
  1982年   10篇
  1981年   9篇
  1980年   8篇
  1979年   14篇
  1976年   5篇
  1958年   10篇
  1957年   9篇
  1954年   10篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
探索采煤地表沉陷的高新监测技术方法是推动采煤沉陷监测的重要工作,无人机载LiDAR采煤塌陷监测技术是无人机与LiDAR构建的一种新型低空三维空间测量技术。以宁东煤炭基地马莲台煤矿采煤沉陷区为例,采用无人机机载LiDAR监测技术获取了2017年4月及8月2期三维点云数据,通过数据三维建模和沉降信息提取,得到了地面沉陷情况的三维立体图,监测出了3处地面沉降区,并利用实测水准点和已有GPS自动监测站数据,对该技术监测地面沉降的精度进行评估。研究结果表明,无人机机载LiDAR监测技术方法可满足采煤塌陷的立体监测需求,具有机动灵活、成本低、效率高、精度高等特点,未来可在类似地区推广应用。  相似文献   
992.
滇西云县—景洪一带广泛出露的中元古界团梁子岩组是一套与扬子基底岩系密切相关的中低变质沉积岩夹火山岩系,其形成时代、沉积充填序列及大地构造属性一直存在争议。出露于云县漫湾地区的团梁子岩组发育厚数米的绿片岩(原岩玄武岩)及绢云石英千枚岩(原岩流纹岩)。采集绢云石英千枚岩样品进行LA-ICP-MS锆石U-Pb定年,分别获得1497±14Ma的岩浆结晶年龄和893±17.3Ma、425±15.7Ma、321±27Ma的变质年龄。认为团梁子岩组中以绿片岩、绢云石英千枚岩为主体的原始沉积岩系形成于中元古代中期,在新元古代全球性的格林威尔造山过程中被青白口纪花岗岩侵入并发生变质作用;在古特提斯洋俯冲过程中,经历古生代造弧作用;同时还获单颗粒2310±15Ma的碎屑锆石,推测滇西云县地区应存在古元古代的结晶基底,由此可知,团梁子岩组应是扬子陆块褶皱基底岩系的组成部分。  相似文献   
993.
Measuring gas content is an essential step in estimating the commerciality of gas reserves. In this study,eight shale core samples from the Mouye-1 well were measured using a homemade patented gas desorption apparatus to determine their gas contents. Due to the air contamination that is introduced into the desorption canister, a mathematical method was devised to correct the gas quantity and quality.Compared to the chemical compositions of desorbed gas, the chemical compositions of residual gas are somewhat different. In residual gas, carbon dioxide and nitrogen record a slight increase, and propane is first observed. This phenomenon may be related to the exposure time during the transportation of shale samples from the drilling site to the laboratory, as well as the differences in the mass, size and adsorptivity of different gas molecules. In addition to a series of conventional methods, including the USBM direct method and the Amoco Curve Fit(ACF) method, which were used here for lost gas content estimation, a Modified Curve Fit(MCF) method, based on the 'bidisperse' diffusion model, was established to estimate lost gas content. By fitting the ACF and MCF models to gas desorption data, we determined that the MCF method could reasonably describe the gas desorption data over the entire time period, whereas the ACF method failed. The failure of the ACF method to describe the gas desorption process may be related to its restrictive assumption of a single pore size within shale samples. In comparison to the indirect method, this study demonstrates that none of the three methods studied in this investigation(USBM, ACF and MCF) could individually estimate the lost gas contents of all shale samples and that the proportion of free gas relative to total gas has a significant effect on the estimation accuracy of the selected method. When the ratio of free gas to total gas is lower than 45%, the USBM method is the best for estimating the lost gas content, whereas when the ratio ranges from 45% to 75% or is more than 75%, the ACF and MCF methods, are the best options respectively.  相似文献   
994.
To investigate the effect of recharge water temperature on bioclogging processes and mechanisms during seasonal managed aquifer recharge (MAR), two groups of laboratory percolation experiments were conducted: a winter test and a summer test. The temperatures were controlled at ~5±2 and ~15±3 °C, and the tests involved bacterial inoculums acquired from well water during March 2014 and August 2015, for the winter and summer tests, respectively. The results indicated that the sand columns clogged ~10 times faster in the summer test due to a 10-fold larger bacterial growth rate. The maximum concentrations of total extracellular polymeric substances (EPS) in the winter test were approximately twice those in the summer test, primarily caused by a ~200 μg/g sand increase of both loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In the first half of the experimental period, the accumulation of bacteria cells and EPS production induced rapid bioclogging in both the winter and summer tests. Afterward, increasing bacterial growth dominated the bioclogging in the summer test, while the accumulation of LB-EPS led to further bioclogging in the winter test. The biological analysis determined that the dominant bacteria in experiments for both seasons were different and the bacterial community diversity was ~50% higher in the winter test than that for summer. The seasonal inoculums could lead to differences in the bacterial community structure and diversity, while recharge water temperature was considered to be a major factor influencing the bacterial growth rate and metabolism behavior during the seasonal bioclogging process.  相似文献   
995.
We study the creep properties of clastic soil in residual state. The intact samples are taken from a reactivated slow-moving landslide in the Three Gorges Reservoir Region, China. Firstly, the patterns of the landslide movement are analysed based on recent monitoring data, which indicate that the soil within the shear zone is undergoing two deformation processes: a creep phase, characterised by different creep rates, and a dormant phase. We then study the creep behaviour of the soil samples through a series of ring shear creep tests under various shear stress conditions. The creep response depends strongly on the ratio of the shear stress to the residual strength, and the normal effective stress, whereas the creep rate decreases due to strength regain. The long-term strength of the clastic soil is close to the residual strength. Therefore, the residual strength obtained from conventional shear test, which is less time consuming than creep test, can be used in long-term stability analyses of creeping landslides.  相似文献   
996.
Landslide-prone slopes in earthquake-affected areas commonly feature heterogeneity and high permeability due to the presence of cracks and fissures that were caused by ground shaking. Landslide reactivation in heterogeneous slope may be affected by preferential flow that was commonly occurred under heavy rainfall. Current hydro-mechanical models that are based on a single-permeability model consider soil as a homogeneous continuum, which, however, cannot explicitly represent the hydraulic properties of heterogeneous soil. The present study adopted a dual-permeability model, using two Darcy-Richards equations to simulate the infiltration processes in both matrix and preferential flow domains. The hydrological results were integrated with an infinite slope stability approach, attempting to investigate the hydro-mechanical behavior. A coarse-textured unstable slope in an earthquake-affected area was chosen for conducting artificial rainfall experiment, and in the experiment slope, failure was triggered several times under heavy rainfall. The simulated hydro-mechanical results of both single- and dual-permeability model were compared with the measurements, including soil moisture content, pore water pressure, and slope stability conditions. Under high-intensity rainfall, the measured soil moisture and pore water pressure at 1-m depth showed faster hydrological response than its simulations, which can be regarded as a typical evidence of preferential flow. We found the dual-permeability model substantially improved the quantification of hydro-mechanical processes. Such improvement could assist in obtaining more reliable landslide-triggering predication. In the light of the implementation of a dual-permeability model for slope stability analysis, a more flexible and robust early warning system for shallow landslides hazard in coarse-textured slopes could be provided.  相似文献   
997.
内蒙古东南部巴林右旗地区发育晚二叠世埃达克质火山岩,岩石组合为安山岩、粗安岩、英安岩及辉石安山岩,其LA-ICP-MS锆石U-Pb测年结果为256.7±2.7Ma,指示其形成于晚二叠世。地球化学特征显示,该套火山岩属准铝质-弱铝质中钾钙碱性岩石系列,具富Si(SiO_256%)、高Al(Al_2O_315%)、富Na、贫K、高Sr、低Yb和Y等特征,Na_2O/K_2O值为2.33~3.90,Mg~#值为35.3~60.8;稀土元素总量为96.69×10~(-6)~192.4×10~(-6)、轻重稀土元素分馏较明显((La/Yb)_N值为6.27~13.82),具正的Eu(δEu=1~1.67)异常,在原始地幔标准化蛛网图中,富集大离子亲石元素Rb、Ba、U,亏损高场强元素Nb、Ta,为O型(大洋型)埃达克质火山岩地球化学特征。综合区域资料,巴林右旗埃达克质火山岩是残留在地幔中的古亚洲洋残余洋壳部分熔融并受到地幔橄榄岩混染形成的,暗示晚二叠世存在古亚洲洋向华北板块俯冲消亡事件。  相似文献   
998.
Rainfall-induced landslide is a common geohazard in tropical and humid regions. Capillary barrier system (CBS) is a popular and widely studied mitigating measure for rainfall-induced landslides. However, several previous studies have shown that the performance of the conventional CBS under intense rainfalls has not been particularly convincing. This paper aims to explore the feasibility and effectiveness of a newly proposed system, known as “biomediated capillary barrier system” (B-CBS) in minimizing water infiltration into soil. A one-dimensional soil column was used to investigate the infiltration characteristics of the proposed system. The results showed that the B-CBS of biomediated residual soil overlying original residual soil (Test IV) could effectively control the infiltration into soil by taking advantage of the less-permeable biomediated soil cover. The B-CBS of biomediated residual soil overlying gravelly sand (Test V) and the three-layered B-CBS of fine sand overlying gravelly sand and biomediated residual soil (Test VI) showed the best performance in terms of minimizing the water infiltration. A suction of about 5 kPa still remained in the soil column after 60 min of infiltration from the ponded water on the soil surface.  相似文献   
999.
In this study, the time-dependent damage process of granite is investigated utilizing two numerical simulation schemes based on continuous method and discontinuous method. Numerical creep tests are carried out with both simulation schemes and mechanical responses and fracture patterns of rock specimens are analyzed. The calibrated numerical models can successfully reflect the typical creep stages observed in the laboratory. The predicted lifetime is in accordance with the laboratory test data. Comparisons are made between the two simulation schemes. It is found that both schemes have unique features that can promote a genuine reflection of the time-dependent damage process of the brittle rocks.  相似文献   
1000.
Generally, induced hydraulic fractures are generated by fluid overpressure and are used to increase reservoir permeability through forming interconnected fracture systems. However, in heterogeneous and anisotropic rocks, many hydraulic fractures may become arrested or offset at layer contacts under certain conditions and do not form vertically connected fracture networks. Mechanical layering is an important factor causing anisotropy in sedimentary layers. Hence, in this study, with a shale gas reservoir case study in the Longmaxi Formation in the southeastern Chongqing region, Sichuan Basin, we present results from several numerical models to gain quantitative insights into the effects of mechanical layering on hydraulic fracturing. Results showed that the fractured area caused by hydraulic fracturing indicated a linear relationship with the neighboring layer’s Young’s modulus. An increase of the neighboring layer’s Young’s modulus resulted in better hydraulic fracturing effects. In addition, the contact between two neighboring layers is regarded as a zone with thickness and mechanical properties, which also influences the effects of hydraulic fracturing in reservoirs. The initial hydraulic fracture was unable to propagate into neighboring layers under a relatively low contact’s Young’s modulus. When associated local tensile stresses exceeded the rock strength, hydraulic fractures propagated into neighboring layers. Moreover, with the contact’s Young’s modulus becoming higher, the fractured area increased rapidly first, then slowly and finally became stable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号